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On the asymptotic number of lattice animals in bond and site 
percolation 

A J Guttmannt and D S Gaunt 
Departmemt of Physics, King's College, Strand, London WC2R 2LS, UK 

Received 30 December 1977 

Abstract. A recently proposed asymptotic form, due to Domb, for the total number of 
bond and site animals of size n, has been investigated numerically. It is found to fit the 
available data better than simpler forms previously assumed. The critical parameters 
entering into the asymptotic form are estimated for a number of two- and three-dimen- 
sional lattices, and conclusions are drawn about their lattice and dimensional dependence. 
In particular, the cluster growth parameter A is estimated with a higher degree of precision 
than that previously attained. 

1. Introduction 

For a wide variety of lattice models, the method of exact series expansions typically 
provides the first dozen or so coefficients of some generating function of interest. 
Analysis of these coefficients is then performed in order to determine the asymptotic 
form either of the coefficients or their generating function. The success of this 
procedure clearly depends on the available coefficients displaying the appropriate 
asymptotic behaviour. 

The most common asymptotic form assumed is c,, - A p n n g ,  where c,, is the nth 
coefficient of the generating function C(x)=XnaOc.xn, p is a lattice and model 
dependent constant and g is an exponent which characterises the nature of the 
singularity in the generating function at 1/p. 

Recently Sykes and Glen (1976) and Sykes et a1 (1976) analysed the generating 
function for the total number of clusters, commonly known as the 'animal' generating 
function, both for the bond and the site problems. Reference should be made to these 
papers and Essam (1972) for a full description of the problem. The only rigorous 
result is that due to Klarner (1967) who showed that the animals were multiplicative, 
and hence that the number of animals of size n is given by c,, -A"4(n) ,  where 
limn+m(4(n))1'n = 1. 

The asymptotic form was assumed by Sykes and Glen (1976) and Sykes et a1 
(1976) to be cn -AA%-' as usual, and their results, while not inconsistent with this 
assumption, did not show the rapid rate of convergence observed for other lattice 
problems, such as the Ising and self-avoiding random walk models. This is reflected in 
the comparatively large error bounds cited for the parameters A and T. Subsequently, 
Domb (1976) suggested that the appropriate asymptotic form for the total number of 
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animals was more complex than that appropriate to the Ising model, since only 
ramified clusters made a significant contribution. Domb argued that the appropriate 
asymptotic form was cn -AA "n-' exp( - Fn '-'), and suggested that the presence of 
the exponential term may explain the slow convergence observed by Sykes and Glen 
(1976) and Sykes et a1 (1976). The results that follow from this suggested form are 
determined in the remainder of this paper. 

2. Analysis of animal series 

We have investigated Domb's proposal by fitting successive quintuples of coefficients, 
ci, ci-', . . . ci-4 to the expression AA "n-' exp( - Fn I-') in order to determine the five 
unknown parameters A, A, 7, F and 6, which involves solving a system of non-linear 
equations. Fortunately however, only 8 enters non-linearly, and once this is deter- 
mined, all the other parameters may be readily obtained by simple algebra. This is 
repeated for successive quintuples of coefficients, thus providing a sequence of esti- 
mates of the unknown parameters. Typical results for site animals per site of a 
triangular lattice are shown in table 1. The first column, labelled ' N ' ,  refers to the last 
coefficient used in the quintuple. It can be seen that A has settled down to a very 
stable value, from which we estimate A = 5.183 * 0.001 while the sequence estimating 
7 is reasonably well converged also, and we estimate 7 = 1.00*0.01. The other 
parameters are not as well converged, and we estimate 8 = 1.7 f 0.2, F = 0*36* 0.03 
and A=0-28*0.02. The analysis of Sykes and Glen (1976) gave the estimates T 
'very close to unity' and A = 5.19* 0.03. The results given here are therefore substan- 
tially better converged, at least for this lattice. We have repeated this procedure for 
other lattices in both two and three dimensions. In table 2 we summarise our results 
for site animals. Before discussing these results further, we will turn our attention to 
the bond animal generating function, where each coefficient represents the number of 
bond animals per bond of the lattice. The results of a five parameter fit are shown in 
table 3 for the same lattices as in the site problem. For both site and bond animals we 
find that the sequence of estimates of A is well converged, those for 7 reasonably well 
converged, while sequences for the other parameters are less well converged. In some 
cases we have not felt confident to extrapolate a sequence, either because the avail- 
able series is too short or because the sequence of estimates is too erratic to 
extrapolate confidently. These cases have been indicated by a dash in the table entry. 

Table 1. Five parameter fit to triangular lattice site animals assuming c, = AA"n-' 
x exp( - Fn 

N e h 7 F A 

10 
11 
12 
13 
14 
15 
16 
Extrapolated 
limit 

2,095 
2.106 
1.577 
1.852 
1.696 
1.694 
1.694 

1.7i0.2 

5.179 
5.179 
5.185 
5.1820 
5.1832 
5.1832 
5.1832 

5.183i0.001 

0.973 
0.972 
1.024 
0.991 
1.006 
1.006 
1.006 

1.00 * 0.01 

0.292 
0.291 
0.436 
0.325 
0.363 
0.364 
0.364 

0.36* 0.03 

0.25 1 
0.25 1 
0.307 
0.266 
0,282 
0.283 
0.283 

0.28 * 0.02 
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Table 2. Results of a five parameter fit to two- and three-dimensional site animals/site. 

Lattice 7 A e F A 

Square 1.0*0.2 4.065*0.005 1’4*0*3 - - 
Triangular 1.00f 0.01 5,183 f 0.001 1.7 f 0.2 0.36 i 0.03 0.28 f 0.02 

Simple cubic 1.45*0.05 8.33iz0.02 <2*8 < 1.0 0.17 i o 4 3  

Face-centred cubic 1.5 rt0.l 13.94 f 0.05 1.8 f 0.3 0.6 i 0.2 0.12 f 0.03 
Body-centred cubic - 11.2f0.2 - - - 

Table 3. Results of a five parameter fit to two- and three-dimensional bond animaldbond. 

Lattice 7 A 6 F A 

0.25 i 0 . 0 3  Square 0 .96i  0.1 5.25 *0.1 - - 
Triangular 1.00f0.02 8*620i0*006 2.3*0.2 0.35i00.02 0.15iO.01 

Simple cubic 1 .5 io .1  10.63 f 0.05 2.5 i1 .0  0.7k0.2 0.16i0.03 
Body-centred cubic 1.55 +0.1 15-3fO.1 2 .4 i1 .0  0.6*0*2 0.11i0.02 
Face-centred cubic 1.6 * 0.1 23.9*0.1 > 2.2 < 0.7 0.07 i 0.02 

Looking at the individual entries, we see that for both the triangular site and bond 
problems, T is very close to unity. If T were precisely unity, the generating function 
would have a logarithmic divergence. For the square lattice site and bond problems, T 
is again close to unity, though the uncertainty is respectively twenty and five times as 
great. Nevertheless, the results do suggest that in two dimensions T = 1 for both the 
site and the bond problems is likely to be a very good approximation. 

For the three-dimensional lattices, the exponent estimates are less precise. There 
is a slight trend for T to increase with lattice coordination number, and this possibility 
should be borne in mind. Nevertheless, taking into account the results obtained in two 
dimensions, a simpler and more appealing conclusion is that T is the same for both 
bond and site problems for all lattices in three dimensions, and with a value of 1.5 or 
perhaps slightly higher. A value of 1.5 would correspond to a square root cusp in the 
generating €unction. 

For all the lattices studied, for both the bond and site problems, the value of A 
agrees with that obtained by Sykes et a1 to within numerical uncertainties. A is seen to 
be lattice and model dependent, and for all lattices we have studied Asite<Abond 
(Whittington and Gaunt 1978). The ratio Asite/Abond appears to decrease with 
increasing coordination number. 

The amplitude A is also seen to be lattice and model dependent, A decreasing with 
increasing coordination number, and it seems that Asit, > Abond for each lattice. 

Unfortunately we can say very little about F and 8. They are closely linked in the 
assumed functional form, in that a small change in one produces a large change in the 
other, without substantially changing the other three parameters A,  A and T. We 
subsequently discuss this point further. 

Another global trend is that the series behave better the higher the coordination 
number of the lattice. For this reason we have shown no results at this stage for the 
honeycomb and diamond lattices. This trend is also observed for other lattice models, 
such as the Ising and self-avoiding random walk models, but there it is clearer why the 
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topology of the more loose-packed lattices should affect the behaviour of the 
coefficients. 

Paralleling the more conventional methods of series analysis, we sought to develop 
biased estimates of the parameters. Thus by fixing the value of the exponent T to that 
previously obtained, namely T = 1.0 in two dimensions, T = 1.5 in three dimensions, a 
high degree of regularity was observed in the sequences for the other parameters. 

Thus in two dimensions we observed that with T fixed at 1.0, all the other 
parameters could be extrapolated with an apparently high degree of accuracy. Our 
results for the two-dimensional lattices so studied are shown in table 4 for both the 
bond and site problems. It is clear from these results that estimates of A can be made 
very precisely, while estimates of the other parameters are less certain. A value of 8 
around 2.2 encompasses all the bond animal results, while for the site animals a lower 
value of around 1.8 seems more appropriate. Such values are consistent with the 
estimates in tables 2 and 3. The uncertainties are however too great for us to 
speculate on any lattice dependence of this parameter, though it appears that 
8(bond)>8(site), though even this can by no means be confidently asserted. The 
amplitude A is clearly lattice and model dependent as observed in tables 3 and 4 also. 
No clear trend is discernable from the estimates of F. 

Table 4. Results of a four parameter fit to two-dimensional bond and site animals 
assuming T = 1. 

Lattice h 9 F A 

Honeycomb (bond) 3.367 * 0.002 2.1f0.5 f 0.2 0.40 f 0.01 
Square (bond) 5,208 f 0.004 2.1f0.3 0.3f0.1 0.26f0.02 
Triangular (bond) 8.620f 0.002 2.33 f 0.05 0.33 i 0.02 0,154 f 0.001 

Square (site) 4.063 * 0.002 2.0 f 0.2 0~5 fO.1  0.31*0*01 
Triangular (site) 5~183f0.001 1.75 f 0.1 0.348* 0*005 0.275 f0.002 

Turning now to the series for the three-dimensional lattices we performed a similar 
analysis, with T fixed at 1.5. We found that this produced much more regular 
sequences of estimates for all parameters, but that in most cases the sequences were 
increasing or decreasing in such a manner as to make extrapolation difficult. We 
found that a slight change in T usually made the sequences much steadier, and more 
obviously extrapolable. This suggested a regularity criterion, whereby T is varied until 
the most stable sequences for the other critical parameters are obtained. Proceeding 
in this way we obtained the results shown in table 5 .  It can be seen that values of T 
ranging from 1.50 to 1.58 were found. This immediately suggests the possibility that T 
is lattice dependent. There is no evidence of such lattice dependence in two dimen- 
sions, or in other lattice models, so we consider it most likely that it is an artifact of the 
method of analysis. Nevertheless, the possibility of lattice dependence should be 
borne in mind. 

The estimates of A agree, within quoted errors, with those of Sykes and Glen 
(1976) and Sykes et a1 (1976), though our confidence limits are rather narrower, in 
one case twenty times smaller. However, these confidence limits depend on the value 
of T. If T were slightly in error there would be a corresponding error in A. As a rule of 
thumb, we find that a 1% increase in T produces a 0.02% increase in A.  
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Table 5. Results of a four parameter fit to three-dimensional bond and site animals. r is 
chosen to regularise the other parameters. 

Lattice 7 A 9 F A 

Diamond (site) 1.55 
Simple cubic (site) 1.50 
Body-centred cubic 1.53 
(site) 
Face-centred cubic 1.53 
(site) 

Diamond (bond) 1.55 
Simple cubic (bond) 1.55 
Body-centred cubic 1.58 
(bond) 
Face-centred cubic 1.58 
(bond) 

5.55*0.01 
8.34i0.02 
11.18 * 0.01 

13.94 i 0.0 1 1.65i0.2 

2.01.0.1 
2.25 izO.15 
2.20* 0.1 

2.3k0.2 

2.5 0.5 
0*55*0.25 
0.73 * 0.06 

0.65*0.1 

0.65 *0.05 
0.70+0.05 
0*70*0.05 

0.73i0.04 

0.29k0.02 
0.19* 0.02 
0.16i0.02 

0.14 h0.02 

0.32 *0.01 
0.172 * 0.002 
0~120*0~002 

0.077 * 0.002 

For the bond problem, we find 8 is stable at around 2.2, while for the site problem 
8 is less stable, but for all but one lattice the central value is less than or equal to 2.0. 
Thus the observation that 8(bond)> 8(site) suggested by the results for two-dimen- 
sional animals also appears to hold for the threk-dimensional animals. Both in two 
and three dimensions we find that 8 = 2,2(bond) and 8 = 1*8(site) encompass substan- 
tially all the results. There is therefore no observed dimensional dependence of 8. Our 
estimates of 8 are however insufficiently precise to assert this confidently. For the 
three-dimensional bond problem, F is approximately constant at 0.7; however, the 
three-dimensional site problem estimates of F are too scattered for any trend to be 
discernible. For the amplitudes A we observe that A decreases with increasing 
coordination number, that A(site)/A(bond) = r, where r > 1 for all but the diamond 
lattice (where the uncertainties are largest) and increases with increasing coordination 
number. 

In conclusion, we find that the asymptotic form proposed by Domb appears to fit 
the available data rather better than the simpler form assumed in previous analyses. 
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